
INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT’14) PROCEEDINGS- c©IPCO-2014 ISSN 2356-5608 1

Threshold Adaptation in Spectrum Sensing For
Cognitive Radio using Particle Swarm Optimization

Mohammad Taha
Communication Engineering Department

Princess Sumaya University for Technology
Amman, Jordan

Email:mtaha@psut.edu.jo
Dia abu Alnadi

Communication Engineering Department
German Jordanian University

Amman, Jordan
Email: dia.abunnadi@gju.edu.jo

Abstract—Cognitive radio concerns primarily with the detec-
tion of primary (licensed) users in the radio frequency spec-
trum. In the case of a primary user is not transmitting in
its allocated frequency band, the band is made available to
a secondary (unlicensed) user for better spectrum utilization.
However, the threshold of detecting a primary user should take
into consideration sensing error minimization which includes
minimum interference on the primary users and high spectrum
utilization. In this paper, an improved energy detector equipped
with particle swarm optimization is proposed to dynamically
adapt the decision threshold according to the received signal
conditions. The problem is formulated as a multi-dimensional
constrained optimization and solved using penalty functions
approach. Simulation results have shown significant improvement
over the conventional energy detection technique that uses fixed
threshold
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I. INTRODUCTION

Cognitive radio (CR) is one of the latest technologies
proposed to support high demands on the radio frequency spec-
trum [1] and [2]. CR system is supposed to enable frequency
reuse when the allocated frequency bands for the (licensed),
also called primary, users are not being used. On the other
hand, secondary users can use these spectrum holes provided
that it guarantees minimum interference on the primary users.

The performance of the CR system is measured in terms
of probability of detection, PD and the probability of false
alarm, PF . PD measures the ability of the system to detect
the presence of primary users in the spectrum, high detection
rate provides maximum protection to the primary users (PU)
from being affected by secondary users transmission. On
the other hand, PF measures the rate at which a primary
user can be detected while it is not truly transmitting, low
probability of false alarm provides high spectrum utilization.
Therefore, for best performance, CR system should provide
maximum detection and minimum false alarm probabilities
through spectrum sensing techniques [3].
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Fig. 1. An Energy Detector

There have been several spectrum sensing techniques pro-
posed in literature. They include energy detection [1], [4] and
[5], waveform and the cyclostationary based sensing [1]. Due
to its simplicity and ease of implementation, energy detection
(ED) has been the most common sensing technique. In ED,
the energy of the observed signal is taken as the test statistics,
τ(k), which can be measured in time [2] or frequency domain
[4] and compared to a threshold, λth. Carriers with energy
above a specified threshold are declared to be active, otherwise,
if the carriers are absent, their frequency bands are made
available to the secondary users. A typical energy detector is
as shown in Figure 1.

It should be noted in Figure 1 that in conventional energy
detector the threshold adaptation is not used and the threshold
selection is relied on a specified probability of false alarm.
Therefore, given the correspondence between PD and PF ,
the threshold is fixed and independent of the observed signal
variations. In this case, if the SNR of the received signal is
low, then sensing performance will be far from optimal. To
solve the problem, adaptive threshold techniques have been
proposed.

In [2], a gradient based threshold estimation has been
presented. The threshold is estimated for each signal variation
by minimizing PF and maximizing PD or equivalently min-
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imizing the probability of a missed detection, PM . However,
in order to track the received signal variations, long sensing
interval is needed in addition to high complexity that arise from
the gradient calculation. These requirements are not affordable
in some cases such as in battery powered devices.

In [6], the estimation of the detection threshold is performed
using 1 D Particle Swarm Optimization (PSO) algorithm [8].
In that work, PSO is used in cooperative scheme to estimate
a fixed global threshold for each observation using the global
signal to noise ratio which is assumed to be known at the
receiver. In that case, the same threshold is used in the
detection of all primary users without considering received
signal variations, which in turns, falsifies detection such as
in the case of large primary user being transmitting on the
spectrum.

In addition to that, the spectrum sensing constraints have not
been considered. The authors in that article have calculated the
probability of error using fixed carrier status pattern while the
receiver operating characteristic (ROC) of the system has not
been shown.

In this context, we consider the estimation of the adaptive
threshold in the energy detection as the transmission condition
changes, i.e., primary user transmission and signal to noise
ratio changes. The proposed algorithm assigns a distinct (local)
threshold to each frequency band of interest such that each
carrier status is decided separately using its local signal to
noise ratio which increases the problem dimensionality with
number of primary users. Thresholds are estimated as to
minimize the probability of false alarm and the probability of a
missed detection while satisfying spectrum sensing constraints.
Specifying spectrum constraints in the current problem is an
important issue since it determines the technology where the
energy detector is to be used.

In order to avoid high computational burden as the number
of primary user increases, PSO is employed with penalty
functions approach to deal with spectrum sensing constraints.
To our knowledge, the application of PSO to this kind of
problem with a single non-cooperative receiver scheme and
local detection thresholds has not been addressed before. The
proposed algorithm is evaluated and the ROC is determined
with random carrier status using Monte-Carlo simulation.

The rest of the paper is organized as follows: in section II
we present energy detection system model and formulate the
problem. PSO algorithm and problem encoding by PSO are
shown in section III. Simulation results are shown in section
IV, and finally we conclude in section V.

II. SYSTEM MODEL

Consider T frames of a baseband signal x(n) each of
N samples received at the CR receiver [4]. Where t =
0, 1 . . . , T−1, n = 0, 1, . . . N−1. The power spectral density
(PSD) for the signal xt(n) is given by

Pt(k) = |Xt(k)|2 (1)

where Xt(k) is the discrete time Fourier transform of the signal
xt(n) calculated at frequencies k fs

N , k = 0, 1 . . . , N/2 due

to Fourier transform symmetry. The average PSD of the T
frames is given by

P̄ (k) =
1
T

T−1∑
t=0

Pt(k) (2)

Instead of calculating the test statistics as the global signal
energy as in [6], the test statistics, τ(k) of the CR receiver is
calculated locally as the energy of each PU frequency band
centered at k fs/N , i.e.,

τ(k) =
1
N

P̄ (k) (3)

Detecting the status of a primary user in the spectrum can
be formulated as a binary hypothesis test as

H1 : xt(n) = c st(n) + vt(n)
H0 : xt(n) = vt(n) (4)

where c is the channel gain between the primary and the
secondary users. s(n) is the transmitted signal in each frame
assumed to be (iid), zero mean, σ2

s variance and uncorrelated
with noise samples v(n). Similarly, v(n) is assumed to be
a zero mean σ2

v variance Gaussian random process, i.e.,
v(n) ∼ N(0, σ2

v).
A primary carrier is declared to be active or idle according

to the decision rule given by

τ(k)
H1

R
H0

λ(k) (5)

The threshold λ is considered to be constant in the conven-
tional energy detection, i.e. λ(k) = λ and determined by a
specified probability of false alarm, PF .

The probability of detection and the probability of false
alarm can be calculated for AWGN channels as in [5]

PD = Pr (τ(k) > λ(k)|H1)

= QN

(√
2γ,

√
λ
)

(6)

PF = Pr (τ(k) > λ(k)|H0)

=
Γ(N/2, λ/2)

Γ (N/2)
(7)

where γ is the global signal to noise ratio (SNR) of the received
signal. QN (. , .) is the generalized Marcum-Q function with
N degrees of freedom, Γ(. , .) is the incomplete Gamma
function and Γ(.) is the complete Gamma function.

In the calculation of PD, the signal to noise ratio is required.
If the noise variance σ2

v is known a priori using vacant
spectrum measurements, for instance or as in the case the PU
user power is known e.g. IEEE 802.22 standard [7], then the
signal power can be calculated by subtracting σ2

v from the total
received power.

It should be noted from equations (6) and (7) that PF is not
a function of the signal to noise ratio. For best performance,
PF should be kept as small as possible, smaller values of PF

means higher threshold λ(k) which will produce a lower PD
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and hence poor detection capability of weak primary users.
Similarly, higher PD means smaller thresholds and higher
possibility of declaring an idle primary user as an active which
produces higher PF .

To avoid the problem, PF and PM = 1 − PD should be
minimized for a given SNR. In conventional adaptive threshold
techniques such as in [6], the global SNR is used in each
observation to determine a single threshold that used to assess
the status of all primary users. In this work, minimization tends
to estimate a threshold vector Λ(k) = [λ1, λ2, . . . λk] such
that the average error probability over all primary user bands
is minimized using the local SNR of each user, γk. In this case,
the average sensing error probability for the kth user can be
calculated as

P̄e = P̄M + P̄F

=
1
2

[
1−QN

(√
2γk,

√
λk

)]

+
1
2

[
Γ(N/2, λk/2)

Γ (N/2)

]
(8)

Interestingly, the objective function to be minimized is P̄e, if
the SNR, γk, in a given band is high, then it can be shown
that the threshold λk in this band is low for high PD but
should not be too low as this would increase PF . Therefore,
considering the conflicting requirements in optimizing (8) for
a given threshold, it is necessary to impose constraints on
the P̄M and P̄F as to control the level of optimization which
is also necessary in designing a detector with specified error
probabilities [2]. The optimization process can be stated as

minimize
λk,γk

P̄e(λk, γk)

subject to P̄M (λk, γk) ≤ α

P̄F (λk) ≤ β.

(9)

The constrained optimization can be turned into uncon-
strained optimization using the penalty functions approach [9].
The augmented fitness (cost) function can be written as

Fitness(λk) = P̄e + P1 max
{
0, P̄M (λk)− α

}2

+ P2 max
{
0, P̄F (λk)− β

}2 (10)

where P1 and P2 are the penalty factors selected as large
numbers to prevent P̄e from dominating the augmented cost
and therefore returns Λ that is not a feasible solution to the
problem. Therefore, each constrain violation adds a high cost
to the objective function proportional to the deviation from the
feasible value.

The optimization in (10) is a k −D problem which is the
main difference between this work and the other solutions to
the problem, such that each dimension represents an indepen-
dent status of each primary user. The optimal values of Λ need
multi-dimensional exhaustive search with random initialization
in order to be determined. Particle Swarm Optimization will
be used to estimate threshold vector Λ.

Algorithm 1: Adaptive threshold estimation using PSO
for For each user do

repeat
for j = 1 to swarm size do

if fitness(λj ,γ) ≤ fitness(λjpbest,γ) then
λjpbest = λj ;
fitness(λjpbest) = fitness(λj);

end
end
λgbest = arg min

λj

(fitness);

for j = 1 to swarm size do
UpdateVelocity:

vj(n + 1) = wvj(n)

+ C1r1(n) [λjpbest(n)− λj(n)]

+ C2r2(n) [λgbest(n)− λj(n)]

UpdatePosition:

xj(n + 1) = xj(n) + vj(n + 1)

end
until StopCondition is met ;

end

III. THRESHOLD OPTIMIZATION USING PARTICLE SWARM
OPTIMIZATION

Particle Swarm Optimization has been designed to optimize
multi-dimensional stochastic functions [8]. It simulates the
natural behavior of bees searching for flowers in a field.
Each particle, λi is attracted to the position of the particle
that encountered the best result globally, λgbest and affected
by its own best experience in exploring the field, λipbest.
The attraction is made by a certain velocity v(n) which is
determined according to the quality of the particle’s current
result and the best particle in the swarm.

The PSO algorithm is used to estimate the threshold λi , i =
1 : k as shown in algorithm 1.

In the algorithm, C1 and C2 are the social parameters
selected as C1 + C2 ≤ 4 to provide stability as the particle
moves. w is the inertial weight decreased linearly with time
to provide better exploration in the first few iterations.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm, we
set P̄M ≤ 0.2, P̄F ≤ 0.1, such parameters are used in an
aggressive cognitive radio system. The signal to noise ratio
SNR is set to −15 dB to all active carriers. The frequency
band of interest is in the range [10 , 32] MHz with bandwidth
2 MHz per carrier which gives a total of 12 channels in
the spectrum. The PSO parameters are set as iterations =
100, w = [0.8 , 0.4] , swarm size = 28. The PSO search
space is set in the range [0, 1.5×max {τ(k)}].

The received signal at the CR input is generated using
random carrier status in each trial and 100 Monte-Carlo trials
are evaluated. The PSO is invoked in each trial to estimate



INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT’14) PROCEEDINGS- c©IPCO-2014 ISSN 2356-5608 4

0 20 40 60 80 100 120
0.36

0.38

0.4

0.42

0.44

0.46

0.48

Iteration

F
i
t
n
e
s
s
(λ

k
)

  

Fig. 2. Fitness SNR = −15 dB
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Fig. 3. Carrier status with test statistics for SNR = −15 dB

[λ1, λ2 . . . λ12] that minimizes the sensing error (9) while
satisfying the imposed constraints. The fitness function is as
shown in figure 2. It is obvious that fitness starts with a
high value results from constraints violation and then the PSO
adapts the thresholds λk such that the fitness is minimized
while the spectrum constraints are satisfied. It should be noted
here that the algorithm converges to a minimum sensing error
of 0.37 for some threshold values but might not converge in
all dimensions due to low SNR.

To illustrate threshold adaptation using the proposed tech-
nique, figure 3 shows two Monte-Carlo trials using random
primary user status (active/idle) along with the test statistics
τ(k) in each observation. In the first row, the status of the
primary carriers is shown such that the original status (dotted),
estimated status using the proposed technique (squared) and
the estimated status using fixed threshold energy detection
(asterisk). In the second row, τ(k) is shown with fixed (dashed)
and adaptive (solid) thresholds. As it can be seen from the
figure, adaptive threshold is at about 47% detection probability
compared to almost 0 for the ED with fixed threshold.

When designing a detector, it is important to evaluate the
false alarm probability as this can under utilize the spectrum.
Therefore, the probability of error is calculated as (8), for
example, in the first trial it was 0.376 compared to 0.468
for the ED, which confirms the performance of the proposed
technique compared to the conventional ED.
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Fig. 4. Probability of detection , PD versus SNR
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Fig. 5. Probability of error, Pe versus SNR

Finally, the performance of the proposed detector is evalu-
ated versus signal to noise ratio SNR using the probability
of detection, PD = Pr

{
k̂ = k|k = 1

}
averaged over all

trials, and the total average error measures. The probability
of detection is as shown in figure 4.

As it can be seen from figure 4, the proposed detector out-
performs the conventional ED for small SNR (below −8 dB)
and ED meets the same performance only at −8 dB. To
confirm the performance increase the probability of error is
evaluated for different SNR as shown in figure 5.

The total error shows performance increase as it offers good
spectrum utilization while keeping very good detection rate. It
should be noted that the error for the conventional ED is lower
for SNR above −11 dB. However, this does not mean better
performance since we have controlled the optimization level as
P̄f ≤ 0.1 which is already achieved in our proposed technique.

V. CONCLUSION

In this paper we have presented an improved energy detector
to solve spectrum sensing problem. The detector is based
on the sensing error minimization while satisfying imposed
constraints. The use of PSO is presented to solve a con-
strained optimization. Performance were evaluated by the use
of Monte-Carlo simulation where it has shown significant
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performance increase over conventional ED. The performance
can be further increased using more advanced techniques to
estimate the signal to noise ratio since we have used the simple
periodgram which is known to be a biased estimate for the
SNR.
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